Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PeerJ ; 10: e13099, 2022.
Article in English | MEDLINE | ID: covidwho-1753924

ABSTRACT

Background: The SARS-CoV-2 pandemic reverberated, posing health and social hygiene obstacles throughout the globe. Mutant lineages of the virus have concerned scientists because of convergent amino acid alterations, mainly on the viral spike protein. Studies have shown that mutants have diminished activity of neutralizing antibodies and enhanced affinity with its human cell receptor, the ACE2 protein. Methods: Hence, for real-time measuring of the impacts caused by variant strains in such complexes, we implemented E-Volve, a tool designed to model a structure with a list of mutations requested by users and return analyses of the variant protein. As a proof of concept, we scrutinized the spike-antibody and spike-ACE2 complexes formed in the variants of concern, B.1.1.7 (Alpha), B.1.351 (Beta), and P.1 (Gamma), by using contact maps depicting the interactions made amid them, along with heat maps to quantify these major interactions. Results: The results found in this study depict the highly frequent interface changes made by the entire set of mutations, mainly conducted by N501Y and E484K. In the spike-Antibody complex, we have noticed alterations concerning electrostatic surface complementarity, breaching essential sites in the P17 and BD-368-2 antibodies. Alongside, the spike-ACE2 complex has presented new hydrophobic bonds. Discussion: Molecular dynamics simulations followed by Poisson-Boltzmann calculations corroborate the higher complementarity to the receptor and lower to the antibodies for the K417T/E484K/N501Y (Gamma) mutant compared to the wild-type strain, as pointed by E-Volve, as well as an intensification of this effect by changes at the protein conformational equilibrium in solution. A local disorder of the loop α1'/ß1', as well its possible effects on the affinity to the BD-368-2 antibody were also incorporated to the final conclusions after this analysis. Moreover, E-Volve can depict the main alterations in important biological structures, as shown in the SARS-CoV-2 complexes, marking a major step in the real-time tracking of the virus mutant lineages. E-Volve is available at http://bioinfo.dcc.ufmg.br/evolve.

2.
J Biomol Struct Dyn ; : 1-21, 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1221314

ABSTRACT

The main-protease (Mpro) catalyzes a crucial step for the SARS-CoV-2 life cycle. The recent SARS-CoV-2 presents the main protease (MCoV2pro) with 12 mutations compared to SARS-CoV (MCoV1pro). Recent studies point out that these subtle differences lead to mobility variances at the active site loops with functional implications. We use metadynamics simulations and a sort of computational analysis to probe the dynamic, pharmacophoric and catalytic environment differences between the monomers of both enzymes. So, we verify how much intrinsic distinctions are preserved in the functional dimer of MCoV2pro, as well as its implications for ligand accessibility and optimized drug screening. We find a significantly higher accessibility to open binding conformers in the MCoV2pro monomer compared to MCoV1pro. A higher hydration propensity for the MCoV2pro S2 loop with the A46S substitution seems to exercise a key role. Quantum calculations suggest that the wider conformations for MCoV2pro are less catalytically active in the monomer. However, the statistics for contacts involving the N-finger suggest higher maintenance of this activity at the dimer. Docking analyses suggest that the ability to vary the active site width can be important to improve the access of the ligand to the active site in different ways. So, we carry out a multiconformational virtual screening with different ligand bases. The results point to the importance of taking into account the protein conformational multiplicity for new promissors anti MCoV2pro ligands. We hope these results will be useful in prospecting, repurposing and/or designing new anti SARS-CoV-2 drugs.Communicated by Ramaswamy H. Sarma.

3.
J Chem Inf Model ; 60(12): 5885-5890, 2020 12 28.
Article in English | MEDLINE | ID: covidwho-1065775

ABSTRACT

Plenty of enzymes with structural data do not have their mechanism of catalysis elucidated. Reactivity descriptors, theoretical quantities generated from resolved electronic structure, provide a way to predict and rationalize chemical processes of such systems. In this Application Note, we present PRIMoRDiA (PRIMoRDiA Macromolecular Reactivity Descriptors Access), a software built to calculate the reactivity descriptors of large biosystems by employing an efficient and accurate treatment of the large output files produced by quantum chemistry packages. Here, we show the general implementation details and the software main features. Calculated descriptors were applied for a set of enzymatic systems in order to show their relevance for biological studies and the software potential for use in large scale. Also, we test PRIMoRDiA to aid in the interaction depiction between the SARS-CoV-2 main protease and a potential inhibitor.


Subject(s)
Computer Simulation , Models, Molecular , Software , COVID-19/metabolism , Catalytic Domain , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Design , Electronics , Humans , Molecular Conformation , Quantitative Structure-Activity Relationship , SARS-CoV-2/metabolism , Static Electricity , Viral Protease Inhibitors/chemistry , Viral Protease Inhibitors/metabolism
4.
J Biomol Struct Dyn ; 39(11): 3924-3933, 2021 07.
Article in English | MEDLINE | ID: covidwho-361388

ABSTRACT

Herein, molecular modeling techniques were used with the main goal to obtain candidates from a drug database as potential targets to be used against SARS-CoV-2. This novel coronavirus, responsible by the COVID-19 outbreak since the end of 2019, became a challenge since there is not vaccine for this disease. The first step in this investigation was to solvate the isolated S-protein in water for molecular dynamics (MD) simulation, being observed a transition from "up" to "down" conformation of receptor-binding domain (RBD) of the S-protein with angle of 54.3 and 43.0 degrees, respectively. The RBD region was more exposed to the solvent and to the possible drugs due to its enhanced surface area. From the equilibrated MD structure, virtual screening by docking calculations were performed using a library contained 9091 FDA approved drugs. Among them, 24 best-scored ligands (14 traditional herbal isolate and 10 approved drugs) with the binding energy below -8.1 kcal/mol were selected as potential candidates to inhibit the SARS-CoV-2 S-protein, preventing the human cell infection and their replication. For instance, the ivermectin drug (present in our list of promise candidates) was recently used successful to control viral replication in vitro. MD simulations were performed for the three best ligands@S-protein complexes and the binding energies were calculated using the MM/PBSA approach. Overall, it is highlighted an important strategy, some key residues, and chemical groups which may be considered on clinical trials for COVID-19 outbreak. [Formula: see text]Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Drug Repositioning , Humans , Molecular Docking Simulation , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL